Folate-PEG Conjugates of a Far-Red Light-Activatable Paclitaxel Prodrug to Improve Selectivity toward Folate Receptor-Positive Cancer Cells

نویسندگان

  • Pritam Thapa
  • Mengjie Li
  • Radha Karki
  • Moses Bio
  • Pallavi Rajaputra
  • Gregory Nkepang
  • Sukyung Woo
  • Youngjae You
چکیده

We recently demonstrated the far-red light-activatable prodrug of paclitaxel (PTX), Pc-(L-PTX)2. Upon illumination with a 690 nm laser, Pc-(L-PTX)2 showed combinational cell killing from rapid photodynamic therapy damage by singlet oxygen, followed by sustained chemotherapy effects from locally released PTX. However, its high lipophilicity (log D7.4 > 3.1) caused aggregation in aqueous solutions and has nonselectivity toward cancer cells. To solve these important problems, we prepared folic acid (FA)-conjugated and photoactivatable prodrugs of PTX with a polyethylene glycol (PEG) spacer of various chain lengths: FA-PEG n -Pc-L-PTX [n = 0 (0k, 5), ∼23 (1k, 7a), ∼45 (2k, 7b), ∼80 (3.5k, 7c), or ∼114 (5k, 7d)]. The PEGylated prodrugs 7a-d had a much improved hydrophilicity compared with the non-PEGylated prodrug, Pc-(L-PTX)2. As the PEG length increased, the hydrophilicity of the prodrug increased (log D7.4 values: 1.28, 0.09, -0.24, and -0.59 for 1k, 2k, 3.5k, and 5k PEG prodrugs, respectively). Fluorescence spectral data suggested that the PEGylated prodrugs had good solubility in the culture medium at lower concentrations (<1-2 μM), but showed fluorescence quenching due to limited solubility at higher concentrations (>2 μM). Dynamic light scattering indicated that all of the prodrugs formed nanosized particles in both phosphate-buffered saline and culture medium at a concentration of 5 μM. The PEG length affected both nonspecific and folate receptor (FR)-mediated uptake of the prodrugs. The enhanced cellular uptake was observed for the prodrugs with medium-sized PEGs (1k, 2k, or 3.5k) in FR-positive SKOV-3 cells, but not for the prodrugs with no PEG or with the longest PEG (5k), which suggests the optimal range of PEG length around 1k-3.5k for effective uptake of our prodrug system. Consistent with the cellular uptake pattern, medium-sized PEGylated prodrugs showed more potent phototoxic activity (IC50s, ∼130 nM) than prodrugs with no PEG or the longest PEG (IC50, ∼400 nM). In conclusion, we have developed far-red light-activatable prodrugs with improved water solubility and FR-targeting properties compared with the nontargeted prodrug.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells.

We report the development and characterization of a novel nanometric system for specific delivery of therapeutic siRNA for cancer treatment. This vector is based on a binary mixture of the cationic surfactant dioctadecyldimethylammonium chloride (DODAC) and the helper lipid monoolein (MO). These liposomes were previously validated by our research group as promising non-viral vectors for nucleic...

متن کامل

Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when ...

متن کامل

Folate Receptor-Mediated Enhanced and Specific Delivery of Far-Red Light-Activatable Prodrugs of Combretastatin A-4 to FR-Positive Tumor

We examined the concept of a novel prodrug strategy in which anticancer drug can be locally released by visible/near IR light, taking advantage of the photodynamic process and photo-unclick chemistry. Our most recently formulated prodrug of combretastatin A-4, Pc-(L-CA4)2, showed multifunctionality for fluorescence imaging, light-activated drug release, and the combined effects of PDT and local...

متن کامل

Intracellular uptake of folate receptor targeted superparamagnetic nanoparticles for enhanced tumor detection by MRI

Folic acid (FA) was conjugated to superparamagnetic iron oxide nanoparticles to develop a tumor specific contrast agent for magnetic resonance imaging (MRI). In this scheme a bifunctional poly(ethylene glycol) (PEG) linker was utilized to both increase biocompatibility and reduce nanoparticle agglomeration. The uptake of nanoparticle-PEG-FA conjugates by folate-receptor (FR) positive MCF-7 cell...

متن کامل

International Journal of Pharma and Bio Sciences V1 (2)2010 DEVELOPMENT AND CHARACTERIZATION OF FOLATE TARGETED NANOPARTICLE DRUG DELIVERY SYSTEM

The main objective of this study was to develop and characterize tumor selective folate conjugated PEG (Polyethylene glycol) polymeric nanoparticulate system for paclitaxel delivery. Paclitaxel -loaded poly (lacticco-glycolic acid) (PLGA) nanoparticles were prepared by the solvent evaporation method and characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017